

vibro-meter®

VM600^{Mk2} MPC4^{Mk2} + IOC4^{Mk2} machinery protection and condition monitoring modules

KEY FEATURES AND BENEFITS

- VibroSight[®] compatible hardware from the vibro-meter[®] product line
- VM600^{Mk2} (second generation) machinery protection and condition monitoring modules
- Available in standard and SIL (safety) versions
- 4 dynamic channels and 2 auxiliary channels configurable as tachometer or DC inputs
- VM600^{Mk2} system safety-line to drive all system relays to a safe state
- Diagnostics (built-in self-test (BIST)) provides continuous feedback on the health of the module
- Individually configurable inputs (with sensor power supply outputs), channel filters, processing and outputs – with simultaneous data acquisition (fixed frequency or order tracking)
- High-resolution spectra (FFT) for condition monitoring: up to 6400 lines every 100 ms
- Up to 10 processed outputs per channel
- Multiple alarms per processed output with configurable limits, hysteresis and time delay
- AND, OR and majority voting logic functions for the combination of alarm and status information

KEY BENEFITS AND FEATURES (cont'd)

- Discrete outputs: 4 user-configurable relays for use by alarms and 1 status relay
- Analog outputs: 4 outputs configurable as either 4 to 20 mA or 0 to 10 V
- Conforms to API 670
- **Direct system Ethernet communications**
- Compatible with VM600^{Mk2} system racks (ABE04x) and slimline racks (ABE056)
- Software configurable
- Live insertion and removal of modules (hot-swapping) with automatic reconfiguration standard version only

KEY BENEFITS AND FEATURES (cont'd)

Front-panel status indicators (LEDs)

APPLICATIONS

- VM600^{Mk2} machinery protection (MPS) and/or condition monitoring (CMS)
- Vibration and/or combustion monitoring
- API 670 applications
- $MPC4^{Mk2} + IOC4^{Mk2}$ SIL version suitable for use in functional-safety contexts in accordance with IEC 61508

DESCRIPTION

Introduction

The VM600^{Mk2} MPC4^{Mk2} + IOC4^{Mk2} machinery protection and condition monitoring modules are designed for operation with the second generation of VM600^{Mk2} rack-based machinery monitoring system, from Parker Meggitt's vibro-meter® product line. A VM600^{Mk2} MPC4^{Mk2} + IOC4^{Mk2} module consists of a processing module and an input/output module that together provide 4 dynamic and 2 auxiliary channels of machinery protection and optional condition monitoring in $VM600^{Mk2}$ systems. Note: The VM600 $^{\mathrm{Mk2}}$ MPC4 $^{\mathrm{Mk2}}$ module is available in a standard version (MPC4Mk2 + IOC4Mk2) and a SIL safety version (MPC4^{Mk2} SIL + IOC4^{Mk2} SIL).

VM600^{Mk2} rack-based monitoring systems

The vibro-meter® VM600Mk2 rack-based monitoring system is the evolution of Meggitt's solution for the protection and monitoring of rotating machinery used in the energy industry. VM600^{Mk2} solutions are recommended when a centralised monitoring system with a medium to large number of measurement points (channels) is required. It is typically used for the monitoring and/or protection of larger machinery such as gas, steam and hydro turbines, and generators, smaller machines such as compressors, fans, motors, pumps and propellers, as well as balance-of-plant (BOP) equipment.

A VM600^{Mk2} system consists of a 19" rack, a rack power supply and one or more monitoring modules. Optionally, relay modules, and rack controller and communications interface modules can also be included.

Two types of rack are available: a VM600^{Mk2} system rack (ABE04x - 6U) that can house up to twelve monitoring modules, and a VM600^{Mk2} slimline rack (ABE056 – 1U) that can house one monitoring module. The racks are typically mounted in standard 19" rack cabinets or enclosures installed in an equipment room.

Different VM600^{Mk2} monitoring modules are available for machinery protection, condition monitoring and/or combustion monitoring applications. For example, the MPC4^{Mk2} + IOC4^{Mk2} modules (available in standard and SIL versions) support both machinery protection and condition monitoring, the XMV16 + XIO16T module supports extended condition monitoring for vibration applications, and the XMC16 + XIO16T module supports extended condition monitoring for combustion applications.

In VM600^{Mk2} systems, the AMC10^{Mk2} + IOC10^{Mk2} temperature and analog monitoring module adds machinery protection and condition monitoring support for applications with large numbers of slowlyvarying (quasi-static) analog signals, such as temperature and other process variables. Note: For VM600^{Mk2} MPC4^{Mk2} + IOC4^{Mk2} modules.

machinery protection functionality is available by

DESCRIPTION (continued)

default and condition monitoring functionality is optional. For VM600^{Mk2} AMC10^{Mk2} + IOC10^{Mk2} modules, both machinery protection and condition monitoring functionality are available by default. It is important to note that condition monitoring functionality also depends on the purchased VibroSight[®] software license.

The RLC16^{Mk2} relay modules (standard and SIL versions) are optional modules used to provide additional relays when the four user-configurable relays per MPC4^{Mk2} + IOC4^{Mk2} module and/or the two user-configurable relays per AMC10^{Mk2} + IOC10^{Mk2} module are not sufficient for an application.

The CPUM^{Mk2} + IOCN^{Mk2} rack controller and communications interface module is an optional module used to provide additional VM600^{Mk2} system functionality such as fieldbus communications; module data aggregation, processing and sharing; rack and/or fieldbus communications redundancy; front-panel alarm reset (AR); MPS rack (CPUx) security; system event and measurement event logging.

VM600^{Mk2} rack-based monitoring systems complement the VibroSmart[®] distributed monitoring systems that are also available from Parker Meggitt's vibro-meter[®] product line, and are compatible with the same VibroSight[®] machinery monitoring software suite.

$$\label{eq:MPC4Mk2} \begin{split} \text{MPC4}^{Mk2} + \text{IOC4}^{Mk2} & \text{modules and} \\ \text{VM600}^{Mk2} & \text{racks} \end{split}$$

 $\label{eq:MPC4Mk2} MPC4^{Mk2} + IOC4^{Mk2} \ machinery \ protection \ and \\ condition \ monitoring \ modules \ are \ used \ as \ part \ of \ a \\ VM600^{Mk2} \ rack-based \ monitoring \ system.$

A MPC4^{Mk2} module is always used with an associated IOC4^{Mk2} module as a pair/set of modules and can be used in a VM600^{Mk2} system rack (ABE04x) or a slimline rack (ABE056).

Both the MPC4 Mk2 and the IOC4 Mk2 are single-width modules that occupy a single VM600 Mk2 rack slot (module position). The MPC4 Mk2 is installed in the front of a VM600 Mk2 rack and the associated IOC4 Mk2 is installed in the rear of the rack, in the slot directly behind the MPC4 Mk2 . Each module connects directly to the rack's backplane using two connectors.

Note: The MPC4^{Mk2} + IOC4^{Mk2} modules are compatible with all VM600^{Mk2} racks (ABE04x system racks and ABE056 slimline racks) and later VM600 racks.

System communications

In a VM600^{Mk2} system (that is, one or more MPC4^{Mk2} + IOC4^{Mk2} modules, AMC10^{Mk2} + IOC10^{Mk2} modules, any associated RLC16^{Mk2} modules, and a optional CPUM^{Mk2} + IOCN^{Mk2} module), the main communications interface is via Ethernet LAN connectors on the front panels of the modules (MPC4^{Mk2} or IOC4^{Mk2}, AMC10^{Mk2} or IOC10^{Mk2}, and IOCN^{Mk2}), which are used for communication with the VibroSight[®] software running on an external computer.

In a VM600^{Mk2} rack (ABE4x), the VME bus can be used to share information between modules in the rack. For example, a MPC4^{Mk2} or AMC10^{Mk2} module can provide information such as measurement, alarm and/or status data to a CPUM^{Mk2} + IOCN^{Mk2} module which can then share the information via one of its industry standard fieldbuses.

In a VM600^{Mk2} system, RLC16^{Mk2} modules are controlled and operated by a associated MPC4^{Mk2} or AMC10^{Mk2} module, as determined by the system's configuration. The VM600^{Mk2} rack's Open collector (OC) bus and Raw bus are used to exchange control and status information between the MPC4^{Mk2} or AMC10^{Mk2} and RLC16^{Mk2} modules, as required.

Relays

The MPC4^{Mk2} + IOC4^{Mk2} module includes five relays. The four user-configurable relays (RL1 to RL4) can be used by a VM600^{Mk2} system to remotely indicate system alarm and/or status information. While, a status (common circuit-fault relay (FAULT)) is used to indicate a problem with the MPC4^{Mk2} + IOC4^{Mk2} module, as detected by the module's internal diagnostics (BIST).

In general, VM600^{Mk2} system relays can be configured as normally energized (NE) or normally de-energized (NDE), and latched or not latched, as required by an application.

Most relays in a VM600^{Mk2} system are driven by control circuitry that supports a VM600^{Mk2} system safety-line, that is, a system-wide control signal that

DESCRIPTION (continued)

automatically drives all IOC4^{Mk2} and RLC16^{Mk2} relays, and IOC4^{Mk2} analog outputs to a safe state should a problem be detected. In this way, IOC4^{Mk2} and RLC16^{Mk2} relays configured as normally energized (NE) can always be de-energized in the event of a problem with one of the components of the relay coil control signal.

Note: This helps support the "de-energize to trip principle" required in safety-related applications.

Software

The VibroSight[®] software supports the configuration and operation of VM600^{Mk2} modules, including the storage, display and/or further processing of MPC4^{Mk2} data for analysis. For example, measurements can be logged to a VibroSight Server data repository and/or displayed in the VibroSight Vision software.

More specifically, MPC4^{Mk2} + IOC4^{Mk2} modules are configured using the VibroSight[®] software. To prioritise machinery protection functionality and help meet stringent cybersecurity and API 670 requirements, the MPC4^{Mk2} + IOC4^{Mk2} module segregates machinery protection (MPS) and condition monitoring (CMS) functionality by running separate module firmware using separate configurations from different VibroSight configuration software:

- VibroSight Protect supports the configuration and operation of machinery protection system (MPS) functionality for a VM600^{Mk2} system, that is, for MPC4^{Mk2} + IOC4^{Mk2}, AMC10^{Mk2} + IOC10^{Mk2}, RLC16^{Mk2}, and CPUM^{Mk2} + IOCN^{Mk2} modules.
- VibroSight Capture supports the configuration and operation of condition monitoring system (CMS) functionality for a VM600^{Mk2} system, that is, for MPC4^{Mk2} + IOC4^{Mk2}, and AMC10^{Mk2} + IOC10^{Mk2} modules.

Other VibroSight software modules support operations such as data display and analysis (VibroSight Vision), data logging and post-processing (VibroSight Server) system maintenance (VibroSight System Manager), etc.

The VibroSight Vision plot catalogue includes static plots such as Bar chart, Spider, Table, Trend, Bode, Polar, Correlation and Shaft Centerline, and dynamic plots such as Waveform, Long Waveform, Polar

Waveform, Orbit, Corbit, Spectrum and Full Spectrum, Waterfall/Cascade, and Full Waterfall/Cascade.

More generally for extended condition monitoring system (CMS) applications, the VibroSight software supports the configuration and operation of XMx16 + XIO16T modules for condition monitoring and/or combustion monitoring, including the processing and presentation of measurement data for analysis. VibroSight is also used to configure and manage CPUM^{Mk2} + IOCN^{Mk2} modules.

Refer to the *VibroSight*[®] *machinery monitoring system software data sheet* for further information.

VibroSight® / VM600^{Mk2} MPC4^{Mk2} and condition monitoring licensing

In VibroSight® / VM600^{Mk2} MPC4^{Mk2} systems, MPC4^{Mk2} + IOC4^{Mk2} machinery protection and condition monitoring modules can provide machinery protection system (MPS) functionality and/or condition monitoring system (CMS) functionality, depending on the requirements of the application.

For the VM600^{Mk2} MPC4^{Mk2} + IOC4^{Mk2} modules, machinery protection functionality is available by default for all versions of the module, while condition monitoring functionality is optional. Accordingly, MPC4^{Mk2} condition monitoring can be used by either (1) ordering a version of the module with condition monitoring enabled or (2) ordering and uploading a condition monitoring license to a version of the module without condition monitoring enabled (using VibroSight System Manager).

Note: MPC4^{Mk2} condition monitoring also requires a VibroSight[®] software edition / license that supports condition monitoring.

For example, a VibroSight / VM600^{Mk2} system consisting of MPC4^{Mk2} + IOC4^{Mk2} modules can initially be installed and used as a MPS only. Then, CMS functionality can be quickly and easily added at any time by upgrading the licenses for the MPC4^{Mk2} + IOC4^{Mk2} module(s) and for VibroSight software, as required.

DESCRIPTION (continued)

Different versions of the MPC4^{Mk2} + IOC4^{Mk2} module

The MPC4^{Mk2} + IOC4^{Mk2} machinery protection and condition monitoring module is available in different versions, as follows:

- MPC4^{Mk2} + IOC4^{Mk2} this is the standard version of the module, suitable for most applications.
- MPC4^{Mk2} + IOC4^{Mk2} SIL this is the SIL safety version of the module, suitable for critical applications demanding the highest level of protection.

The MPC4^{Mk2} + IOC4^{Mk2} (standard) is the original version of the module and supports all features and processing functions.

The MPC4^{Mk2} SIL + IOC4^{Mk2} SIL is a version of the module optimised for use in safety-related applications (functional-safety contexts). Accordingly, it has been designed in accordance with the IEC 61508 "functional safety" standard and is certified as SIL 2 capable by design.

In general, the MPC4 Mk2 SIL + IOC4 Mk2 SIL module supports the same signal processing functions and measurements as the MPC4 Mk2 + IOC4 Mk2 (standard) module but SIL versions of modules are visually distinct and feature some important differences in order to meet the strict requirements of SIL safety systems.

For example, the MPC4^{Mk2} SIL module uses three electronics processing modules in order to help ensure that measurements can always be trusted (compared to one processing module for the MPC4^{Mk2} module) and offers more complete separation of machinery protection system (MPS) and condition monitoring system (CMS) functionality so that the safety function is never compromised. The MPC4^{Mk2} SIL also includes more comprehensive diagnostics (BIST). For a more detailed comparison, see Differences between standard and SIL versions of the VM600Mk2 MPC4Mk2 + IOC4Mk2 (and RLC16Mk2) modules starting on page 6.

In addition, some versions of VM600^{Mk2} modules are also available with a conformal coating in order to provide additional environmental protection.

Applications information

As part of a VibroSight® / VM600^{Mk2} system solution, MPC4^{Mk2} + IOC4^{Mk2} machinery protection and condition monitoring modules – standard and/or SIL – are ideal for the protection and/or condition monitoring of critical assets such as gas, steam or hydro turbines and other high-value rotating machines in a wide range of industrial applications.

For further information, contact your local Parker Meggitt representative.

DIFFERENCES BETWEEN STANDARD AND SIL VERSIONS OF THE VM600 MK2 MPC4 MK2 + IOC4 MK2 (AND RLC16 MK2) MODULES

Standard versions: VM600 ^{Mk2} MPC4 ^{Mk2} + IOC4 ^{Mk2} (and RLC16 ^{Mk2})	SIL versions: VM600 ^{Mk2} MPC4 ^{Mk2} SIL + IOC4 ^{Mk2} SIL (and RLC16 ^{Mk2} SIL)	
Aluminium (silver) front panels (MPC4 ^{Mk2} + IOC4 ^{Mk2} , RLC16 ^{Mk2} modules)	Aluminum (silver) front panels with yellow/orange "SIL Safety" labeling (MPC4 ^{Mk2} SIL + IOC4 ^{Mk2} SIL, RLC16 ^{Mk2} SIL modules)	
One electronics processing module on MPC4 ^{Mk2} for all functionality (measurements, management and interfacing)	Three electronics processing modules on MPC4 ^{Mk2} SIL: • 2 × processing modules for measurements (for measurement redundancy with cross-checking) • 1 × processing module for management and interfacing	
Separation (firmware only) of machinery protection system (MPS) and condition monitoring system (CMS) functionality/processing on MPC4 ^{Mk2} module	Complete separation (hardware and firmware) of machinery protection system (MPS) and condition monitoring system (CMS) functionality/processing on MPC4 ^{Mk2} SIL module	
MPC4 ^{Mk2} + IOC4 ^{Mk2} module only runs diagnostics	MPC4 ^{Mk2} SIL + IOC4 ^{Mk2} SIL module and RLC16 ^{Mk2} SIL module both run diagnostics	
Up to 2 × tachometer (speed) signals/channels per MPC4 ^{Mk2} + IOC4 ^{Mk2} module	1 × tachometer (speed) signal per MPC4 ^{Mk2} SIL + IOC4 ^{Mk2} SIL module	
Using the VM600 ^{Mk2} /VM600 rack's Tacho bus, MPC4 ^{Mk2} + IOC4 ^{Mk2} modules can freely share tachometer (speed) channel signals between different modules. (That is, MPC4 ^{Mk2} + IOC4 ^{Mk2} modules can put signals on the Tacho bus and take signals from it too.)	Using the VM600 ^{Mk2} /VM600 rack's Tacho bus, MPC4 ^{Mk2} SIL + IOC4 ^{Mk2} SIL modules can share tachometer (speed) channel signals between different modules. (That is, MPC4 ^{Mk2} SIL + IOC4 ^{Mk2} SIL modules car put signals on the Tacho bus and take signals from it too.) However, MPC4 ^{Mk2} SIL modules can only use such shared Tacho bus signals for CMS functionality/processing (not for MPS functionality/processing).	
Digital high-pass filter (HPF) cutoff frequency up to 15 kHz	Digital high-pass filter (HPF) cutoff frequency up to 400 Hz	
Up to 4 × user-configurable relays (RL1 to RL4) and 1 × common circuit-fault relay (FAULT) per MPC4 ^{Mk2} module	Up to 4 × user-configurable relays (RL1 to RL4) and 1 × common circuit-fault relay (FAULT) per MPC4 ^{Mk2} SIL module. Note: In safety-related applications, use of the FAULT relay is mandatory.	
Up to 16 × user-configurable relays (RL1 to RL16) per additional RLC16 ^{Mk2} module	Up to 16 × user-configurable relays (RL1 to RL16) per additional RLC16 ^{Mk2} SIL module	
User-configurable relays can be configured as normally energized (NE) or normally de-energized (NDE)	User-configurable relays can be configured as normally energized (NE) or normally de-energized (NDE). Note: In safety-related applications, relays must be configured as normally energized (NE).	
Alarms and relays can be configured as latched or not latched	Alarms and relays can be configured as latched or not latched. Note: In safety-related applications, relays must be configured as latched.	

DIFFERENCES BETWEEN STANDARD AND SIL VERSIONS OF THE $VM600^{MK2} MPC4^{MK2} + IOC4^{MK2}$ (AND RLC16^{MK2}) MODULES (continued)

Standard versions: VM600 ^{Mk2} MPC4 ^{Mk2} + IOC4 ^{Mk2} (and RLC16 ^{Mk2})	SIL versions: VM600 ^{Mk2} MPC4 ^{Mk2} SIL + IOC4 ^{Mk2} SIL (and RLC16 ^{Mk2} SIL)	
Machinery is protected when the MPC4 ^{Mk2} module's main operating mode is Locked or Unlocked	Machinery is protected only when the MPC4 ^{Mk2} SIL module's main operating mode is Locked. Note: In safety-related applications, a MPC4 ^{Mk2} SIL module can only run in the Locked state.	
VM600 ^{Mk2} system (MPC4 ^{Mk2} + IOC4 ^{Mk2} module and any RLC16 ^{Mk2} modules) does not enter the safe state (fail-safe mode) if an input channel saturates	VM600 ^{Mk2} system (MPC4 ^{Mk2} SIL + IOC4 ^{Mk2} SIL module and a RLC16 ^{Mk2} SIL module) enters the safe state (fail-safe mode) if an input channel saturates for more than 1 hour	
Live insertion and removal of modules (hot-swapping) is permitted with automatic reconfiguration of modules. That is, a replaced MPC4 ^{Mk2} module will be auto-configured by its associated IOC4 ^{Mk2} module.	Live insertion and removal of modules (hot-swapping) is permitted but automatic reconfiguration of modules is not supported. That is, a replaced MPC4 ^{Mk2} SIL module will not be auto-configured by its associated IOC4 ^{Mk2} SIL module. (It can only be configured manually using the VibroSight [®] software.)	
Verification of MPC4 ^{Mk2} serial number by the VibroSight [®] software	Verification of MPC4 ^{Mk2} SIL and IOC4 ^{Mk2} SIL serial numbers by the VibroSight [®] software	
Protection configuration signature not required	Protection configuration signature (SIL system signature) required. Note: Enforced by the VibroSight [®] software.	
Enforcement of VM600 ^{Mk2} system (MPC4 ^{Mk2} + IOC4 ^{Mk2} and RLC16 ^{Mk2}) configuration rules by the VibroSight [®] software	Enforcement of VM600 ^{Mk2} SIL system (MPC4 ^{Mk2} SIL + IOC4 ^{Mk2} SIL and RLC16 ^{Mk2} SIL) configuration and safety rules by the VibroSight [®] software	
Maximum altitude of 2000 m (6560 ft) for VM600 ^{Mk2} systems	Maximum altitude of 1600 m (5250 ft) for VM600 ^{Mk2} SIL systems	

See Notes on the following page ...

DIFFERENCES BETWEEN STANDARD AND SIL VERSIONS OF THE VM600^{MK2} MPC4^{MK2} + IOC4^{MK2} (AND RLC16^{MK2}) MODULES (continued)

Notes

For standard applications, a VM600^{Mk2} system consists of only standard versions of modules: MPC4^{Mk2} + IOC4^{Mk2} modules and optional RLC16^{Mk2} modules. Accordingly, CPUM^{Mk2} + IOCN^{Mk2} rack controller and communications interface modules and other standard modules such as VM600^{Mk2}/VM600 XMx16 + XIO16T extended condition monitoring modules also be used in such systems.

For safety-related applications (functional-safety contexts), a VM600^{Mk2} system consists of only SIL versions of modules: MPC4^{Mk2} SIL + IOC4^{Mk2} SIL modules and optional RLC16^{Mk2} SIL modules. Accordingly, CPUM^{Mk2} + IOCN^{Mk2} rack controller and communications interface modules and other standard modules such as VM600^{Mk2}/VM600 XMx16 + XIO16T extended condition monitoring modules cannot be used as part of the SIL system. However, if such standard modules are not relevant to the safety function, they can coexist within a VM600^{Mk2}/VM600 system rack used in a safety application provided that the recommendations in the VM600^{Mk2} SIL safety manual are followed.

In general, standard versions of VM600^{Mk2} modules should be used with other standard VM600^{Mk2} modules, while VM600^{Mk2} SIL modules. However, since VibroSight 7.6 and the latest module firmware(s), the standard and SIL versions of VM600^{Mk2} MPC4^{Mk2} + IOC4^{Mk2} modules can now connected to and used with the standard and SIL versions of VM600^{Mk2} RLC16^{Mk2} modules. More specifically, it is now possible to use a MPC4^{Mk2} + IOC4^{Mk2} module to control the relays on a RLC16^{Mk2} SIL module, and a MPC4^{Mk2} SIL + IOC4^{Mk2} SIL module to control the relays on a RLC16^{Mk2} module. (Previously, no interoperation between the standard and SIL versions of VM600^{Mk2} modules was possible.)

Note: Even though the standard and SIL versions of VM600^{Mk2} MPC4^{Mk2} + IOC4^{Mk2} modules can now be connected to and used with the standard and SIL versions of VM600^{Mk2} modules, the cross-compatibility between the standard and SIL versions of VM600^{Mk2} modules is not supported for safety-related applications (functional-safety contexts), and this is enforced by the VibroSight[®] software.

A VM600^{Mk2} SIL system (MPC4^{Mk2} SIL + IOC4^{Mk2} SIL) allows only 1 × tachometer (speed) signal per module because both auxiliary channels are used to provide a redundant and cross-checked tachometer input, where required, in safety-related applications (functional-safety contexts). This is part of the module's diagnostics (built-in self-test (BIST)), in order to verify that there is a valid and reliable tachometer.

A VM600^{Mk2} SIL system (MPC4^{Mk2} SIL + IOC4^{Mk2} SIL and an optional RLC16^{Mk2} SIL) will enter the safe state (fail-safe mode) whenever the module's diagnostics detects an issue that prevents normal operation, for example, hardware faults/problems, significant differences in the measurements from the redundant electronics processing modules, etc.

In the safe state, the MPC4^{Mk2} SIL module activates the system-wide VM600^{Mk2} system safety-line control signal in order to automatically drive all system relays and analog outputs to a safe state. However, it is important to note that only VM600^{Mk2} SIL system relays (that is, MPC4^{Mk2} SIL + IOC4^{Mk2} SIL relays and RLC16^{Mk2} SIL relays) are safety outputs. More specifically, they are SIL certified and can be used for critical functions in machinery protection applications, such as initiating the shutdown ("trip") of a machine. VM600^{Mk2} SIL system analog outputs are not safety outputs and should not be used for critical functionality.

In the safe state, the MPC4^{Mk2} SIL module also activates its status relay (common circuit-fault relay (FAULT) relay) in order to allow issues to be remotely detected/indicated. Front-panel LEDS are used for local indication.

For more detailed information on VM600^{Mk2} SIL systems in safety-related applications (functional-safety contexts), refer to the $VM600^{Mk2}$ machinery monitoring system – *IEC 61508 SIL 2 MPS safety manual*.

SPECIFICATIONS

Supported sensors

Sensor inputs : Compatible with a wide range of sensors and measurement chains with

current (2-wire) or voltage (3-wire) outputs, including the following sensors from the Parker Meggitt vibro-meter[®] product line:

· CAxxx vibration sensors (piezoelectric accelerometers)

CExxx and PVxxx vibration sensors (piezoelectric accelerometers

and velocity sensors)

CVxxx and VExxx vibration sensors (velocity sensors)

• CPxxx dynamic pressure sensors (piezoelectric pressure sensors)

TQxxx proximity sensorsLSxxx air-gap sensors.

Dynamic inputs

Number of channels : 4 (independent channels)

Voltage inputs

• DC measurement range : 0 to +20 V_{DC} or 0 to -20 V_{DC} .

Note: 10 Hz DC filter (see **DC filtering on page 9**).

 $\begin{array}{lll} \bullet & AC \text{ measurement range} & : \pm 20 \text{ V}_{\text{PEAK-PEAK}} \\ \bullet & AC + DC \text{ measurement range} & : \pm 24 \text{ V}_{\text{PEAK-PEAK}} \\ \text{Common-mode voltage range} & : -50 \text{ to } +50 \text{ V}_{DC} \\ \end{array}$

Common-mode rejection ratio (CMRR) : >55 dB, up to 60 Hz.

>60 dB, from 45 to 65 Hz.

Current inputs

• DC measurement range : 0 to 35 mA.

Note: 10 Hz DC filter (see DC filtering on page 9).

AC measurement range : ±30 mA_{PEAK-PEAK}
 AC + DC measurement range : ±50 mA_{PEAK-PEAK}

Frequency bandwidth : DC to 20 kHz

Input impedance

• Voltage : ≥ 100 kΩ, between the differential (high and low) inputs

• Current : $200 \Omega \pm 0.2\%$

Measurement accuracy

• Amplitude : ±1% of full scale

• Phase : $\pm 1^{\circ}$ from 10 Hz to 2 kHz.

 $\pm 15^{\circ}$ from 2 to 20 kHz.

• DC : $\pm 0.85\%$ of full scale for voltage inputs (0 to 10 V_{DC}).

 $\pm\,1.25\%$ of full scale for current inputs (0 to 20 mA).

Dynamic input range : ≥80 dB, from 3 Hz to 20 kHz

DC filtering

DC filter

• Cutoff frequency (-3 dB) : 10 Hz $\pm 3.5 \text{ Hz}$

• Roll-off : -40 dB/decade (second order)

Note: The DC filter is used to extract the DC part of a dynamic input when it is configured as a DC input.

High-pass filtering

High-pass filter

Cutoff frequency (-3 dB)
 Roll-off
 20 dB/decade (first order)

• Phase error : <1° at 100 times the cutoff frequency (10, 100 or 300 Hz)

Note: The high-pass filter is used to configure a dynamic input for an AC only input signal with one of 3 different cutoff frequencies. This filter can be disabled in order to allow the DC-coupling of the input signal (AC + DC).

Auxiliary inputs

Number of channels : 2 (independent channels)

configurable as either tachometer inputs or DC inputs

Common-mode voltage range $: -50 \text{ to } +50 \text{ V}_{DC}$ Common-mode rejection ratio (CMRR) : >50 dB, up to 60 Hz.

>55 dB, from 45 to 65 Hz.

Tachometer (AC) inputs

Voltage / frequency
 Sine-like signals:

measurement ranges \cdot 2 to 50 V_{PEAK-PEAK} from 2 Hz to 50 kHz.

Pulse-like signals:

• 0.8 to 50 $V_{PEAK-PEAK}$ from 2 Hz to 10 kHz, with a 1% min. duty cycle. • 1 to 50 $V_{PEAK-PEAK}$ from 10 Hz to 1 kHz, with a 5% min. duty cycle. • 2 to 50 $V_{PEAK-PEAK}$ from 1 kHz to 50 kHz, with a 15% min. duty cycle.

Note: For tachometer input signals meeting these criteria, the MPC4^{Mk2} + IOC4^{Mk2} module extracts rising and falling edges.

: Crossing of threshold on rising edge or falling edge of signal

Triggering method
Crossing of threshold on rising edge or falling edge
Triggering threshold
2/3 of peak-peak value ± 10% for rising edge.

1/3 of peak-peak value ± 10% for falling edge.

Tachometer pulse acquisition/detection

Speed / frequency measurement range

(on input)

: Up to 51.2 kHz

: 1 to 100000 RPM / 0.01667 to 1666.67 Hz.

Note: Configurable tacho divider of 1 to 255 (pulses per revolution).

DC inputs

Voltage measurement range : ±20 V_{DC}
 Current measurement range : 0 to 25 mA

Note: 10 Hz DC filter (see DC filtering on page 10).

Input impedance

Voltage : ≥ 100 kΩ, between the differential (high and low) inputs

• Current : $200 \Omega \pm 0.2\%$

 $\label{eq:local_problem} \mbox{Measurement accuracy (DC)} \qquad \qquad : \pm 0.85\% \mbox{ of full scale for voltage inputs (0 to 10 V_{DC})}.$

±1% of full scale for current inputs (0 to 20 mA).

Dynamic input range : ≥72 dB

DC filtering

DC filter

• Cutoff frequency (-3 dB) : 10 Hz ±3.5 Hz

Roll-off : -40 dB/decade (second order)

Note: The DC filter is used to extract the DC part of an auxiliary input when it is configured as a DC input.

Sensor/measurement chain OK check

Number of levels : Up to 2 configurable threshold levels (2 DC regions)

OK level range

• Voltage inputs $\hspace{3.1cm} : \pm 20 \, V_{DC}$ • Current inputs $\hspace{3.1cm} : \hspace{3.1cm} 0 \text{ to } 23 \text{ mA}$

Operating principle

• SIL safety sensors : Line-fault detection of conditions such as a problem with the sensor

and/or cabling, problem with the signal conditioner, and/or other

problem with the measurement chain or power supply.

Note: Requires a SIL safety sensor/measurement chain that provides a suitable diagnostic signal (DC bias level), for example, measurement

chains using IPC707 or IQS9xx signal conditioners.

Standard sensors
 Powered sensors – line-fault detection of conditions such as

open-circuit or short-circuit.

Unpowered sensors – line-fault detection of conditions such as

open-circuit.

Digital signal processing

Analogue to digital converter (ADC) : 24 bit

Dynamic range : \geq 80 dB

Frequency bandwidth : 0 Hz to 20 kHz

Accuracy

Amplitude : ≤1% of input full scale

• Phase : ≤1.5°

Digital filtering

• Notch filter : 50 or 60 Hz

• ISO 2954 filter : 10 Hz to 1 kHz (-3 dB), -24 dB/octave

• Band-pass filter : < 0.1 dB ripple in pass band, > 55 dB attenuation in stop band,

0.1 or 3 dB attenuation at cutoff, -24 to -60 dB/octave slope

High-pass filter
 Low-pass filter
 10 Hz to 20 kHz

Data acquisition : Fixed frequency or order tracking
Fixed frequency : Frequency span: 0.25 Hz to 20 kHz.

Note: The low-pass filter (LPF) cutoff frequency to high-pass filter (HPF) cutoff frequency ratio must be less than 400 when the HPF cutoff

frequency is less than 3 Hz. See also Digital filtering above.

Order tracking : Digital resampling.

Tracking range: 300 to 6000 RPM (default).

Frequency span: DC to 3.125, 6.25, 12.5, 25, 50 or 100 orders.

Waveform averaging: 1 (default).

Note: Order tracking requires a reference speed (auxiliary input

configured as a tacho/speed channel).

Measurement resolution : 2 048, 4096, 8192 or 16384 point waveform /

800, 1600, 3200 or 6400 line spectrum

FFT window types : Blackman, Blackman-Harris, Flat top, Hamming, Hanning, Kaiser α =1,

Kaiser α =5, Kaiser α =10, Rectangular or Tukey α =0.5.

Note: Hanning is the default window type.

FFT resolution : 800, 1600, 3200 or 6400 spectral lines

Data sampling rate : 2.56 × frequency bandwidth

Extracted data (measurements) : Up to 10 processed outputs per channel/processing function.

See Processing functions on page 14.

Extracted data types : Time domain measurements: Scalar.

Frequency domain measurements: Scalar, Vector and Phasor.

: Time domain or Frequency domain measurements. Fixed-frequency measurements

Time domain measurements: Overall (Scalar).

Frequency domain measurements:

Single frequency – nX (Amplitude + Phase (Vector)), Band - Band start to Band stop (Amplitude (Scalar)). Highest peak - Band start to Band stop (Amplitude + Phase

+ Frequency (Phasor)).

Order-tracking measurements : Frequency domain measurements only.

Frequency domain measurements:

Single frequency – nX (Amplitude + Phase (Vector)), Band - Band start to Band stop (Amplitude (Scalar)), Highest peak - Band start to Band stop (Amplitude + Phase

+ Frequency (Phasor)).

: 0, 1 or 2 (Acceleration to Velocity or Displacement), as required Integration count

Measurement types : Time domain measurements: True RMS, True Peak, True Peak-peak,

True Average.

Frequency domain measurements: Amplitude + Phase (Vector). Note: True RMS and True average measurements have a configurable Response time (400 ms default). True Peak and True Peak-peak measurements have a configurable Decay time (4700 ms default).

Qualifiers (rectifiers) : Time domain measurements: True RMS, True Peak, True Peak-peak, True Average, Scaled Peak, Scaled Peak-peak or Scaled Average.

Frequency domain measurements: RMS, Peak, Peak-peak or Average.

Update rate - internal (MPC4^{Mk2} module)

: 20 ms min. for time domain processing. 100 ms min. for frequency domain processing.

Note: MPC4^{Mk2} + IOC4^{Mk2} and RLC16^{Mk2} relays are also updated every

20 ms.

Update rate - external : Configurable as 100 ms, 200 ms, 500 ms, 1 s, 2 s or 5 s.

(VibroSight Capture condition monitoring Note: 1 s is the default VibroSight Capture condition monitoring update

data update rate)

Update rate - external

(VibroSight Capture condition monitoring

data logging rule rate)

Update rate - external

(VibroSight Vision live data

display interval)

: Configurable between 100 ms and 99 days

: Configurable as 100 ms, 200 ms, 500 ms, 1 s, 2 s, 5 s, 10 s, 20 s, 50 s, ...

Machinery protection system (MPS) functionality / processing

Measurement resolution : 2048 point waveforms / 800 line spectra

(fixed)

Notes

The lower-resolution waveforms and spectra available from MPC4 Mk2 + IOC4 Mk2 modules configured for and running machinery protection only are intended to support the configuration, verification and troubleshooting of sensor / measurement chains.

VibroSight Vision uses a direct connection to a module in order to display these plots.

Firmware : Machinery protection firmware (640-025-vvv-ppp) running on the

module (MPC4^{Mk2})

Configuration : Machinery protection configuration stored on the module (IOC4^{Mk2})

MPS functionality / licensing : Machinery protection (MPS) functionality is available by default

Condition monitoring system (CMS) functionality / processing

Measurement resolution : 4096, 8192 or 16384 point waveforms / (user-configurable) : 1600, 3200 or 6400 line spectra

Waveform frequency span : 0 or 0.25 to 156.25, 312.5, 625, 1250, 2500, 5000, 10000 or 20000 Hz

Spectra resolution : 1600 line spectra: 0.1, 0.2, 0.39, 0.78, 1.56, 3.13, 6.25 or 12.5 Hz.

3200 line spectra: 0.05, 0.1, 0.2, 0.39, 0.78, 1.56, 3.13 or 6.25 Hz. 6400 line spectra: 0.02, 0.05, 0.1, 0.2, 0.39, 0.78, 1.56 or 3.13 Hz.

Spectra averaging : Yes: 1 to 100 / RMS, Peak hold or Mean

Measurement averaging : Yes: 1 to 100

Notes

The higher-resolution waveforms and spectra (and other plot types) available from MPC4^{Mk2} + IOC4^{Mk2} modules configured for and running condition monitoring are intended to support the display and analysis of dynamic measurement data for the purposes of condition monitoring.

VibroSight Vision typically uses a connection to a VibroSight Server in order to display such live and/or historical waveforms and spectra (and all other plot types).

Firmware : Condition monitoring firmware (640-033-vvv-ppp) running on the

module (MPC4^{Mk2})

Configuration : Machinery protection configuration stored on the associated

VibroSight Server

CMS functionality / licensing : Condition monitoring (CMS) functionality is optional and can be used by

either:

(1) ordering a version of the MPC4^{Mk2} module with condition monitoring

enabled

or

(2) ordering and uploading a MPC4^{Mk2} CMS license to a version of the

MPC4^{Mk2} module without condition monitoring enabled.

See Ordering information on page 28 for further information.

Notes

For condition monitoring, the waveforms / spectra resolution and update rates are user-configurable, so the VibroSight Protect software automatically checks the configured processing load and will issue a warning if resolutions and/or update rates must be reduced.

For example, a MPC4^{Mk2} + IOC4^{Mk2} module can typically provide a maximum of two to four 6400 line spectra at 100 ms, depending on the required filter coefficients.

Processing functions

The following configurable signal processing blocks and measurements are supported by the MPC4^{Mk2} + IOC4^{Mk2} module:

Single-channel processing

Bearing absolute vibration:

- Dynamic channels only with accelerometers or velocity sensors
- · Fixed-frequency or order-tracking data acquisition
- · Band-pass or ISO 2954 filtering
- · Waveform and spectrum
- Up to 10 measurements for fixed-frequency data acquisition: up to 6 time-domain measurements (2 direct and 2 per integration level) and up to 4 frequency-domain measurements
- Up to 6 measurements for order-tracking data acquisition: up to 2 time-domain measurements (2 direct) and up to 4 frequency-domain measurements.

Combustion dynamics:

- · Dynamic channels only with pressure sensors
- · Fixed-frequency data acquisition
- · Band-pass and notch (50 or 60 Hz) filtering
- · Waveform and spectrum
- Up to 6 measurements for fixed-frequency or order-tracking data acquisition: up to 2 time-domain measurements and up to 4 frequency-domain measurements.

Shaft relative vibration:

- · Dynamic channels only with proximity sensors
- · Fixed-frequency or order-tracking data acquisition
- · Band-pass filtering
- · Waveform and spectrum
- Up to 6 measurements for fixed-frequency or order-tracking data acquisition: up to 2 time-domain measurements and up to 4 frequency-domain measurements (AC displacement)
- 1 quasi-static measurement (DC gap / position).

Note: Shaft relative vibration processing outputs include both dynamic (AC) and quasi-static (DC) components.

Shaft eccentricity:

- · Dynamic channels only with proximity sensors
- 1 quasi-static measurement (eccentricity).

Air gap:

- · Dynamic channels only with air-gap sensors
- · Fixed-frequency data acquisition
- Rotor shape and rotor signature waveforms with associated measurements (min. gap, max. gap, avg. gap, rotor eccentricity, rotor circularity and rotor ellipticity)
- · 1 air gap measurement (min. gap).

Custom dynamic:

- · Dynamic channels only with other/custom sensors
- · Fixed-frequency or order-tracking data acquisition
- · Band-pass or ISO 2954 filtering
- Waveform and spectrum
- Up to 10 measurements for fixed-frequency or order-tracking data acquisition: up to 4 time-domain measurements and up to 6 frequency-domain measurements
- 1 quasi-static measurement (DC).

Note: Custom dynamic processing outputs include both dynamic (AC) and quasi-static (DC) components.

Position

- · Dynamic or auxiliary channels with proximity sensors
- 1 quasi-static measurement (position / DC gap).

Note: Position processing is equivalent to Shaft relative vibration processing's quasi-static (DC) component.

Shaft axial position (collar method and shaft-end method):

- · Dynamic or auxiliary channels with proximity sensors
- 1 quasi-static measurement (axial position).

Rotor position (collar):

- · Dynamic or auxiliary channels with proximity sensors
- 1 quasi-static measurement (position).

Differential expansion (collar method and pendulum method):

- Dvnamic or auxiliary channels with proximity sensors
- 1 quasi-static measurement (differential expansion).

Rotor expansion (collar method and pendulum method):

- · Dynamic or auxiliary channels with proximity sensors
- 1 quasi-static measurement (rotor expansion).

Quasi-static pressure:

- · Dynamic or auxiliary channels with pressure sensors
- 1 quasi-static measurement (pressure).

Quasi-static temperature:

- · Dynamic or auxiliary channels with temperature sensors
- 1 quasi-static measurement (temperature).

Housing expansion:

- · Dynamic or auxiliary channels with LVDT type sensors
- · 1 quasi-static measurement (expansion).

Custom quasi-static:

- · Dynamic or auxiliary channels with other/custom sensors
- 1 quasi-static measurement (DC).

Speed:

- Auxiliary channels only (tachometers) with speed/tacho sensors (for example, proximity sensors)
- 1 speed measurement for a single-shaft with configurable tacho ratio
- 2 speed measurements for a dual-shaft with individually configurable tacho ratios.

Note: Speed processing for dual-shafts supports machines such as gearboxes, belts, chains, pulleys, etc.

Notes

In general, the MPC4^{Mk2} + IOC4^{Mk2} module supports one processing block – dynamic or auxiliary – per input channel. A maximum of 6 single-channel processing blocks can be configured per MPC4^{Mk2} + IOC4^{Mk2} module (that is, four for dynamic channels and two for auxiliary channels).

A maximum of 3 dual-channel processing blocks can be configured per $MPC4^{Mk2} + IOC4^{Mk2}$ module (that is, two for dynamic channels and one for auxiliary channels).

For each processing block, there are 2 to 10 processed outputs (data extractions), depending on the function.

Dual-channel processing

X-Y bearing absolute vibration:

- · Dynamic channels only with accelerometers or velocity sensors
- · Fixed-frequency data acquisition
- · Band-pass or ISO 2954 filtering
- Orbits 1 unfiltered overall orbit (OVR orbit) and up to 6 filtered orbits (1X, 2X, etc.)
- Full spectrum with up to 6 frequency-domain measurements (1X, 2X, Not 1X, etc.)
- 1 time-domain measurement (Vmax).

Note: Vmax can be calculated using the real maximum displacement value directly from the orbit (that is, the largest radius from the unfiltered orbit), which is a peak measurement.

Alternatively, Vmax can be calculated using an X-Y max discriminator that uses the maximum value of the peak-to-peak displacement values measured in two orthogonal directions of the unfiltered orbit, which is a peak-peak measurement.

X-Y shaft relative vibration:

- · Dynamic channels only with proximity sensors
- · Fixed-frequency data acquisition
- · Band-pass filtering
- Orbits 1 unfiltered overall orbit (OVR orbit) and up to 6 filtered orbits (1X, 2X, etc.)
- · Shaft centerline
- Full spectrum with up to 6 frequency-domain measurements (1X, 2X, Not 1X, etc.)
- 1 time-domain measurement (Smax).

Note: Smax can be calculated using the real maximum displacement value directly from the orbit (that is, the largest radius from the unfiltered orbit), which is a peak measurement (ISO 7919-1 Method C).

Alternatively, Vmax can be calculated using an X-Y max discriminator that uses the maximum value of the peak-to-peak displacement values measured in two orthogonal directions of the unfiltered orbit, which is a peak-peak measurement (ISO 7919-1 Method B).

Shaft absolute vibration:

- Dynamic channels only with proximity sensor and accelerometer or velocity sensor
- · Fixed-frequency data acquisition
- · Band-pass filtering
- · Absolute spectrum with up to 6 frequency-domain measurements (1X, 2X, Not 1X, etc.)
- 1 time-domain measurement (overall).

Shaft axial position (collar method and shaft-end method):

- · Dynamic channels only with proximity sensors
- 1 quasi-static measurement (axial position).

Note: Dual-channel Shaft axial position processing is similar to its single-channel equivalent except that two sensors and voting logic (typically 2002) are used.

Differential expansion (collar method and dual-taper method and single-taper method):

- · Dynamic or auxiliary channels with proximity sensors
- 1 quasi-static measurement (differential expansion).

Rotor expansion (collar method and dual-taper method and single-taper method):

- · Dynamic or auxiliary channels with proximity sensors
- · 1 quasi-static measurement (rotor expansion).

Delta quasi-static pressure:

- · Dynamic or auxiliary channels with pressure sensors
- 1 quasi-static measurement (differential pressure (mathematical subtraction)).

Delta quasi-static temperature:

- Dynamic or auxiliary channels with temperature sensors
- 1 quasi-static measurement (differential temperature (mathematical subtraction)).

Mathematical function:

- Dynamic or auxiliary channels any sensors
- 1 mathematically calculated measurement (Sum, Subtraction, RMS Sum, RMS Subtraction, Min or Max).

Differential housing expansion:

- · Dynamic or auxiliary channels LVDT type sensors
- 1 quasi-static measurement (differential expansion (mathematical subtraction)).

In general, dual-channel processing requires that both channels are configured for fixed-frequency data acquisition and use the same filter (frequency span) settings, such as cutoff frequencies, attenuation and slope. However, Mathematical function processing does allow different processing functions to be combined.

Alarm processing

Alarms : Alarm with configurable limits (severity levels), hysteresis and time delay

per processed output (data extraction)

Time delay : Up to 60 s in steps of 100 ms

: Up to 20% of the alarm level (physical quantity) Hysteresis

Severity levels

· Machinery protection applications : Out of range+, Danger+, Alert+,

Normal.

Alert-, Danger-, Out of range-

: Out of range+, Danger+, Alert+, Information+, Basic condition monitoring applications

Normal,

Information-, Alert-, Danger-, Out of range-

Adaptive monitoring : Adaptive monitoring uses a control parameter provided by an auxiliary

channel (typically speed) to multiply the configured alarm limits by multiple coefficients configured for different ranges of the control

parameter.

Trip multiplier uses the DSI TM control signal to multiply the configured alarm limits by a single configurable coefficient. See **Discrete signal**

interface (DSI) inputs on page 18.

Alarm combination

Logic functions : AND, OR and majority voting logic (1002, 2002 and 2003), with optional

inversion of individual inputs

Level 1 (basic) logic functions

 Number : 32 · Number of inputs per logic function : 32

· Configurable inputs : Sensor OK checks, measurement alarms (such as Danger+, Alert+,

Alert- and Danger-) and/or associated data quality indicators (status

bits)

Level 2 (advanced) logic functions

 Number : 32 · Number of inputs per logic function : 32

· Configurable inputs : Outputs from level 1 (basic) logic functions.

Note: Level 1 (basic) and level 2 (advanced) logic functions can be

combined to generate more complex logic function.

Alarm update rate (internal) : 100 ms max.

Note: This is the time required for the MPC4^{Mk2} + IOC4^{Mk2} module to detect and initiate an alarm, including output relay (RL1 to RL4)

activation.

Discrete signal interface (DSI) inputs

Control signal

• Alarm bypass (AB) : A closed contact between the DSI AB and RET inputs inhibits the

activation of alarms and relays on the MPC4^{Mk2} + IOC4^{Mk2} module. Note: The common circuit-fault relay (FAULT) is activated when

Alarm bypass (AB) is enabled.

• Alarm reset (AR) : A closed contact between the DSI AR and RET inputs resets (clears) the

alarms and relays latched by the MPC4^{Mk2} + IOC4^{Mk2} module. Note: The Alarm reset (AR) input is edge-sensitive and a high-to-low transition is required to activate the reset. The Alarm reset (AR) input should not be held low and must transition low-to-high before another

reset (high-to-low) can activate the reset.

• Trip multiply (TM) : A closed contact between the DSI TM and RET inputs multiplies the

configured alarm levels for the MPC4Mk2 + IOC4Mk2 module by a scale

factor (software configurable)

Operating principle : Detection of an open circuit or a closed circuit on the input

Buffered outputs – dynamic channels

Number : 4

Type : Buffered outputs (buffered "raw" analog signal).

Buffered analog signals corresponding to dynamic channel input channels (CH1 to CH4) are available on BNC connectors on the MPC4^{Mk2} module (front of rack) and on the J2 screw-terminal

connector on the IOC4Mk2 module (rear of rack).

See Connectors on page 26.

Frequency bandwidth : DC to 60 kHz

Output impedance : $<5 \Omega$

Accuracy

• Amplitude : ± 0.1 dB up to 20 kHz.

 \pm 3 dB from 20 to 60 kHz.

• Phase : < 1° from 10 Hz to 2 kHz.

 $< 15^{\circ}$ from 2 to 20 kHz.

Transfer ratios

Voltage input: 1 V/VCurrent input: 0.2 V/mA

Admissible load on output

• Resistance : ≥50 kΩ

• Capacitance : Able to drive up to 3 m of cable with a typical capacitance of 100 pF/m

• Impedance : >50 kΩ with a load capacitance <5 nF

Buffered outputs – auxiliary channels

Number : 2

Type : Buffered outputs (buffered "raw" analog signal or TTL-level signal).

Buffered analog signals corresponding to auxiliary input channels (AX1 and AX2) are available on BNC connectors on the MPC4^{Mk2} module (front of rack) and on the J2 connector on the IOC4^{Mk2} module (rear of

rack).

See Connectors on page 26.

Note: When an auxiliary input is configured as a tachometer input, a buffered TTL-level signal corresponding to the auxiliary input channel (AX1 or AX2) is available on the J2 connector on the IOC4^{Mk2} module (rear of rack). When an auxiliary input is configured as a DC

input, no digital TTL-level signal is available.

Frequency bandwidth : DC to 60 kHz

Output impedance

• Buffered TTL-level signal : <300 Ω

(tachometer input)

• Buffered "raw" analog signal : <5 Ω

(DC input)

Signal levels : 0 to 5 V TTL-compatible signal (non-inverting)

Admissible load on output

• Resistance : $>50 \text{ k}\Omega$

• Capacitance : Able to drive up to 3 m of cable with a typical capacitance of 100 pF/m

• Impedance : >50 kΩ with a load capacitance <5 nF

Analog outputs

Number of local outputs : 4 single-ended outputs.

Used to output quasi-static measurement signals (DC).

Individually configurable as either current or voltage output signals.

Current outputs

• Range : 4 to 20 mA (nominal).

Two modes of operation are supported, as follows:

 \bullet Mode 1, measured value with quality checks – the analog output is driven in the 4 to 20 mA signal range during normal operation, and the

analog output is driven to 2 mA to indicate a problem.

Mode 2, measured value without quality checks – the analog output is

driven in the 2 to 23 mA signal range.

Note: Current outputs are 0 mA \pm 0.5 mA when disabled.

• Resolution : 10 μA

• Accuracy : ≤1% of full scale

• Admissible load on output $: \leq 360 \Omega$.

Note: Compliance voltage is 10 V min.

Voltage outputs

• Range : 0 to 10 V.

Note: Voltage outputs are $0 \text{ V} \pm 10 \text{ mV}$ when disabled.

• Resolution : 2.5 mV

Accuracy : ≤1% of full scale

• Admissible load on output $; \; \geqslant 50 \; k\Omega \; \text{with a load capacitance} < 5 \; \text{nF}$

Update rate / frequency bandwidth : 100 ms / 10 Hz max.

Short-circuit protection : Yes

Discrete outputs

Relays

• Number : 5.

4 × output relays (RL1 to RL4) – suitable for alarm and/or

status outputs.

1 × common circuit-fault relay (FAULT) – for fault indication.

See Relay characteristics on page 22.

Configurable functions
 Normally energized (NE) or normally de-energized (NDE).

Latched or unlatched.

• Configurable inputs : From the sensor OK checks, the measurement alarms (Danger+, Alert+,

Alert-, Danger-) and/or the logic functions of the MPC4^{Mk2} module

Communication interfaces

External (Ethernet)

• Number : 1 port / 2 connectors.

Available on LAN connector of MPC4^{Mk2} or IOC4^{Mk2}.

See Connectors on page 26.

In practise, either the Ethernet LAN connector on the MPC4^{Mk2} module or on the associated IOC4^{Mk2} module can be used but it is not possible to connect/use both Ethernet connectors at the same time. This means that Ethernet connections can be made either via the front of the VM600^{Mk2}/VM600 rack (using MPC4^{Mk2}) or via the rear of the rack (using IOC4^{Mk2}), on a module by module basis, as required.

Note: Use of the LAN connector on the IOC4^{Mk2} module requires that the latest versions of each of the MPC4^{Mk2} + MPC4^{Mk2} modules (PNR 600-041-001-003 or later for the MPC4^{Mk2} and PNR 620-024-100-104 or later for the IOC4^{Mk2}), together with the latest module firmware and VibroSight 7.6 or later are used.

Current default factory settings are Ethernet via IOC4^{Mk2}

(and disabled on the MPC4^{MK2}).

Network interface : 10/100BASE-TXData transfer rate : Up to 100 Mbps

• Maximum distances : System Ethernet communications can support distances up to 100 m at

100 Mbps, depending on Ethernet cabling.

For distances greater than the specified maximum, the Ethernet

interface operates at reduced data transfer rates.

• Protocols : TCP/IP (proprietary protocols) for communication with a computer

running software such as VibroSight®

Internal (VME)

• Bus interface : A24/D16 slave mode

Note: In a VM600^{Mk2} rack (ABE4x), the VME bus can be used to share information between modules in the rack. For example, MPC4^{Mk2} + IOC4^{Mk2} modules can provide information such as measurement, alarm and status data to a CPUM^{Mk2} + IOCN^{Mk2} rack controller module which can then share the information via one of its industry standard fieldbuses. While in the opposite direction, a CPUM^{Mk2} + IOCN^{Mk2} rack controller module can issue alarm bypass (AB), alarm reset (AR) and trip multiply (TM) commands to MPC4^{Mk2} + IOC4^{Mk2} modules in the rack (when modules are Unlocked (maintenance state)).

VM600^{Mk2} module compatibility

: In general, standard versions of VM600 Mk2 modules should be used with other standard VM600 Mk2 modules, while VM600 Mk2 SIL modules should be used with other VM600 Mk2 SIL modules.

Note: Since VibroSight 7.6, the standard and SIL versions of VM600 Mk2 MPC4 Mk2 + IOC4 Mk2 modules can now connected to and used with the standard and SIL versions of VM600 Mk2 RLC16 Mk2 modules but this cross-compatibility between the standard and SIL versions of VM600 Mk2 modules is not supported for safety-related applications (functional- safety contexts). See the Notes under the "Differences between standard and SIL versions of the VM600 Mk2 MPC4 Mk2 + IOC4 Mk2 (and RLC16 Mk2) modules" table on page 8.

For reference, MPC4 Mk2 + IOC4 modules (standard and SIL) include benefits and features such as improved measurement capability, VM600 Mk2 system safety-line functionality and module diagnostics (BIST) that are not supported by the VM600 Mk1 MPC4/IOC4T card pair.

Note: In a VM600^{Mk2} system, MPC4^{Mk2} + IOC4^{Mk2} and RLC16^{Mk2} modules automatically configure their relays as normally energized (NE) or normally de-energized (NDE), as per the configuration created using VibroSight Protect, whereas VM600^{Mk1} MPC4/IOC4T and RLC16 cards use jumpers on the card to manually configure the relays as NE or NDE.

System communications

External

Internal – VM600^{Mk2} VME

Internal – VM600^{Mk2} rack buses

: System communication interface (Ethernet) for communication with VibroSight® software running on an external computer

: VME bus interface for communication with controlling/processing modules via rack backplane. For example, with a CPUM^{Mk2} + IOCN^{Mk2} rack controller module.

: Open collector (OC) bus and/or Raw bus to share and monitor RLC16^{Mk2} module relays, and distribute the system-wide safety-line control signal.

Raw bus to monitor/share the RLC16^{Mk2} module's status.

Note: Generally, in a VM600^{Mk2} rack (ABE4x), the Raw bus is used to share dynamic input signals between processing modules, the Tacho bus is used to share tachometer (speed) input signals between processing modules, and the Open collector (OC) bus is used by processing modules to drive relay modules, all in the same rack. For example, the Raw bus and the Tacho bus are commonly used to share sensor signals (vibration and speed respectively) between different machinery protection modules and/or condition monitoring modules.

Specifically for a VM600^{Mk2} system in a VM600^{Mk2} rack (ABE4x), the Open collector (OC) bus and/or Raw bus can be used to connect up to 32 outputs from a MPC4^{Mk2} + IOC4^{Mk2} machinery protection and condition monitoring module to RLC16^{Mk2} relay modules in the same rack, if additional relays are required.

External communication links/connections

Connection to a computer/network

: The system communication interface (Ethernet LAN connector on the MPC4^{Mk2} module or on the associated IOC4^{Mk2} module) can be used for connections/communications between a MPC4^{Mk2} + IOC4^{Mk2} module and a computer/network, using standard Ethernet cabling. See **Communication interfaces on page 20** and **Connectors on page 26**.

VibroSight[®] software

: Used for the configuration of a VM600^{Mk2} system (one or more MPC4^{Mk2} + IOC4^{Mk2} modules and any associated RLC16^{Mk2} modules)

Configuration

MPC4^{Mk2} + IOC4^{Mk2} module

: Software configurable via/over Ethernet, using a computer running the VibroSight[®] software.

VibroSight Protect is used for the configuration and operation of machinery protection system (MPS) functionality for VM600 Mk2 systems (MPC4 Mk2 + IOC4 Mk2 , RLC16 Mk2 , CPUM Mk2 + IOCN Mk2).

VibroSight Capture is used for the configuration and operation of condition monitoring system (CMS) functionality for VM600 Mk2 systems (MPC4 Mk2 + IOC4 Mk2).

Refer to the *VibroSight®* machinery monitoring system software data sheet for further information.

The IOC4 Mk2 includes non-volatile memory that stores a copy of the configuration for the MPC4 Mk2 + IOC4 Mk2 module, such that if the MPC4 Mk2 is replaced (hot-swapped), it is automatically reconfigured using the configuration from the IOC4 Mk2 .

Jumpers on the IOC4^{Mk2} module are manually configured to select the VM600^{Mk2} rack's Open collector (OC) bus and/or Raw bus lines that control and monitor the module's relays, and distribute the system-wide VM600^{Mk2} system safety-line control signal. The jumper information is generated by the VibroSight[®] software.

Relay characteristics

Number : 4 × user-configurable relays (RL1 to RL4).

1 × common circuit-fault relay (FAULT).

Note: The common circuit-fault relay (FAULT) is also known as the status $\,$

relay.

Type : Single-pole double-throw (SPDT) / 1 Form C,

epoxy-sealed or equivalent

Contact arrangement : $1 \times COM$, $1 \times NC$ and $1 \times NO$ contact per relay (RL1 to RL4 and FAULT).

Additional fused contact (1 × COM FUSED) for common circuit-fault

relay (FAULT) only.

See Relay fuse on page 23 and Connectors on page 26.

Rated load

· UL

VDE : 8 A at 250 V_{AC} resistive, 100k cycles

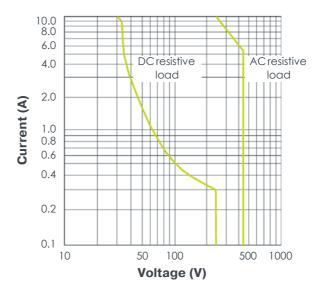
: 10 A at 250 V_{AC} resistive, 30k cycles.

10 A at 30 V_{DC} resistive, 30k cycles.

Maximum switching power : 2500 VA / 300 W.

Note: If the switching voltage is >30 V_{DC}, then special precautions must be taken. Contact Parker Meggitt (Meggitt SA) for more information.

Maximum switching voltage : $240 \, V_{AC} / 125 \, V_{DC}$


Maximum switching current : 10 A

Safety approved contact rating $\,$: 10 A at 240 V_{AC} .

10 A at 30 V_{DC}.

Maximum switching capacity curves

Operate / release time : 7 / 3 ms typ.

Dielectric strength

Between open contacts
 Between contact and coil
 1000 V_{AC (RMS)}
 5000 V_{AC (RMS)}

Insulation resistance : $1000 \text{ M}\Omega \text{ min.}$ (at 500 V_{DC} , 50 % relative humidity (RH))

Mechanical life $: > 1 \times 10^7$ operations

Electrical life : $> 1 \times 10^5$ operations (at 8 A, 250 V_{AC})

Note: In general, MPC4 Mk2 + IOC4 Mk2 module relays are limited to 240 V_{AC} max. in accordance with the EN 61010 electrical safety standard.

Type

When used in a VM600 Mk2 slimline rack (ABE056) with a DC power supply, the relay contacts on a IOC4 Mk2 module have a maximum switching voltage of 70 V_{DC} / 33 $V_{AC \, (RMS)}$ (46.7 $V_{AC \, (PEAK)}$).

Relay fuse

Contact : Fused contact (COM FUSED) for common circuit-fault relay (FAULT)

only.

See **Relay characteristics on page 22** and **Connectors on page 26**. : Littelfuse 443 series NANO^{2®} surface-mount fuse (SMD) or equivalent

Characteristic : Time delay (T) / "Slo-Blo®"

Current rating : 2 A

Voltage rating : $250 \, V_{AC} \, max$. Interrupting rating : $50 \, A \, (at \, 250 \, V_{AC})$ (breaking capacity)

Case style : Small rectangular surface-mount fuse (SMD) with square end blocks for

insertion into a board-mounted (SMD) metal fuse clip/holder

Environmental

Temperature

Operating
 Storage
 -20 to 65°C (-4 to 149°F)
 -40 to 85°C (-40 to 185°F)

Humidity

Operating and storage : 0 to 95% relative humidity (RH), non-condensing

Altitude : $2000 \text{ m} (6560 \text{ ft}) \text{ max. for standard versions } (\text{MPC4}^{\text{Mk2}} + \text{IOC4}^{\text{Mk2}}).$

1600 m (5250 ft) max. for SIL versions (MPC4Mk2 SIL + IOC4Mk2 SIL).

Approvals

Conformity : European Union (EU) declaration of conformity (CE marking)

Electromagnetic compatibility : EMC compliant (2014/30/EU):

(EMC) EN 61000-6-2:2005.

EN 61000-6-4:2007 + A1:2011.

Electrical safety : EN 61010-1:2010.

CAN/CSA-C22.2 No. 61010-1. : RoHS compliant (2011/65/EU)

Environmental management : RoHS compliant (2011/65/EU)

Functional safety : SIL 2 capable in accordance with IEC 61508:2010

Insulation coordination for measuring relays and protection equipment

: Separate circuits versions of modules according to IEC 60255-27

Power supply to module (input)

Power source : VM600^{Mk2} rack power supply

Supply voltages : $+5 V_{DC}$ and $\pm 12 V_{DC}$

Consumption

 $\begin{array}{ll} \cdot \ \mathsf{MPC4^{Mk2}} & : < 6 \, \mathsf{W} \\ \cdot \ \mathsf{IOC4^{Mk2}} & : < 9 \, \mathsf{W} \\ \mathsf{Total \ power \ consumption} & : < 15 \, \mathsf{W} \\ \end{array}$

(MPC4^{Mk2} + IOC4^{Mk2} module)

Power supplies to sensors (output)

Number : $6 \times \text{independent sensor power supplies}$.

Note: One per input/channel (CH1 to CH4, AX1 and AX2).

Power supply output

• Constant voltage : $+24 \text{ or } -24 \text{ V}_{DC} \pm 3\%$ at up to 25 mA max.

Note: Short-circuit protected.

• Constant current : +6 mA ±1%.

Note: Voltage compliance > 22 V_{DC}.

Control inputs

MPC4^{Mk2}

• 1

. 2

· REBOOT

DSI signals

IOC4Mk2

Status indicators (LEDs)
MPC4Mk2

· CH1 to CH4

· DIAG/STATUS

AX1 and AX2

LOCK

· LAN

IOC4^{Mk2}
• LAN

: The 1 push-button (left) is used to run the protection test for the $MPC4^{Mk2} + IOC4^{Mk2}$ module

: The 2 push-button (right) is used to lock/unlock the MPC4^{Mk2} + IOC4^{Mk2} module, that is, to switch between the states of a VM600^{Mk2} system (MPC4^{Mk2} + IOC4^{Mk2} modules and any associated RLC16^{Mk2} modules), as follows:

 Locked (safety/secure state) – the VM600^{Mk2} system performs its monitoring and protection functions while ensuring the security of the modules/system and it's configuration.
 More specifically, the configuration cannot be changed and maintenance activities cannot be performed.

• Unlocked (maintenance state) – the VM600 Mk2 system performs its monitoring and protection functions without ensuring the security of the modules/system and it's configuration.

More specifically, the configuration can be changed and maintenance activities can be performed.

Note: Physical access to a VM600 Mk2 system (specifically, the MPC4 Mk2 module) is required in order to change the state (operating mode) and therefore to be able to change the machinery protection (MPS) functionality for a VM600 Mk2 system.

: Simultaneously pushing the 1 and 2 push-buttons (left and right) is used to reset the MPC4 Mk2 + IOC4 Mk2 module and any associated RLC16 Mk2 modules (VM600 Mk2 system), resulting in a reboot and power-on selftest (POST)

: See Discrete signal interface (DSI) inputs on page 18

: Multicolour LED used to indicate the status of the MPC4^{Mk2} + IOC4^{Mk2} module, such as normal operation, configuration status or internal hardware or firmware failures

: Multicolour LEDs used to indicate the status of the dynamic channels (CH1 to CH4)

: Multicolour LEDs used to indicate the status of the auxiliary channels (AX1 and AX2)

: LED used to indicate the state of the MPC4^{Mk2} + IOC4^{Mk2} module (VM600^{Mk2} system): Locked (safety/secure state) or Unlocked (maintenance state)

: LAN connector link and activity LEDs to indicate the status of the system LAN (Ethernet) communications

: LAN connector link and activity LEDs to indicate the status of the system LAN (Ethernet) communications

Connectors

 $MPC4^{Mk2}$

• CH1 to CH4 : BNC connectors (female).

Buffered "raw" sensor/measurement chain signals for the

dynamic channel inputs (CH1 to CH4).

Note: For the dynamic channels, the buffered "raw" outputs are

analog signals.

• AX1 and AX2 : BNC connectors (female).

Buffered "raw" sensor/measurement chain signals for the

auxiliary channel inputs (AX1 and AX2).

Note: For the auxiliary channels, the buffered "raw" outputs are analog signals. Corresponding digital signals are available on J2.

• LAN : 8P8C (RJ45) modular jack, female.

System Ethernet for communication between the MPC4^{Mk2} + IOC4^{Mk2}

module and a computer running the VibroSight® software.

IOC4Mk2

• J1 : Weidmüller 24-pin S2C connector (male), compatible with

B2CF plug-in connectors (female) with push-in connections.

Inputs (analog signals) for the dynamic channels (CH1 to CH4) and the

auxiliary channels (AX1 and AX2).

• J2 : Weidmüller 36-pin S2C connector (male), compatible with

B2CF plug-in connectors (female) with push-in connections.

Outputs (buffered "raw" signals) for the dynamic channels (CH1 to CH4)

and the auxiliary channels (AX1 and AX2).

Outputs (digital (pulse train) signals (TTL-level)) for the auxiliary

channels (AX1 and AX2).

Inputs and ground reference (digital signals) for the DSI control signals

(AB, AR and TM).

Outputs (analog signals) for the analog DC outputs.

• J3 : Phoenix contact 16-pin MC/GF connector (male), compatible with

mating connectors (female) available with push-in connections or

screw-terminal connections.

Outputs (contacts) for the common circuit-fault relay (FAULT) and the

user-configurable relays (RL1 to RL4).

• LAN : 8P8C (RJ45) modular jack, female.

System Ethernet for communication between the MPC4^{Mk2} + IOC4^{Mk2}

module and a computer running the VibroSight® software.

Notes

The IOC4^{Mk2} module's connectors are removable to simplify installation and mounting.

For the J1 and J2 connectors:

- Clamping range (min. to max.): 0.2 to 1 mm² (28 to 18 AWG)
- Tightening torque (min. to max.): 0.15 to 0.2 N m (0.11 to 0.15 lb-ft).

For the J3 connector:

- Clamping range (min. to max.): 0.14 to 1.5 mm² (28 to 16 AWG) approx.
- Tightening torques (min. to max.): 0.2 to 0.25 N m (0.15 to 0.18 lb-ft) approx. for conductor screws, 0.2 to 0.3 N m (0.15 to 0.22 lb-ft) approx. for mounting-flange screws.

The J3 connector provides $1 \times COM$, $1 \times NC$ and $1 \times NO$ contact per user-configurable relay (RL1 to RL4) and $1 \times COM$, $1 \times COM$ FUSED, $1 \times NC$ and $1 \times NO$ contact for the common circuit-fault relay (FAULT).

Either the LAN on the MPC 4^{Mk2} or on the IOC 4^{Mk2} can be used (see **Communication interfaces on page 20**).

Physical

MPC4^{Mk2}

Height : 6U (262 mm, 10.3 in)
 Width : 20 mm (0.8 in)
 Depth : 187 mm (7.4 in)

• Weight : 0.42 kg (0.93 lb) approx.

IOC4^{Mk2}

Height : 6U (262 mm, 10.3 in)
 Width : 20 mm (0.8 in)
 Depth : 125 mm (4.9 in)

• Weight : 0.31 kg (0.68 lb) approx.

ORDERING INFORMATION

To order please specify

Туре	Designation	Ordering number (PNR)		
MPC4 ^{Mk2}	Different versions of the VM600 ^{Mk2} MPC4 ^{Mk2} processing module:			
	 Standard version with no CMS license (condition monitoring is not enabled on the module) 	600-041		
	 Standard version with no CMS license, with conformal coating (condition monitoring is not enabled on the module) 	600-041L		
	 Standard version with CMS license pre-installed (condition monitoring is enabled on the module) 	603-041		
	The MPC4 ^{Mk2} ordering number PNRs 600-041 and 603-041 correspond to the unc 600-041-vvv-vvv, where "vvv" represents the hardware versions that can be used b			
MPC4 ^{Mk2} SIL	 SIL version with no CMS license (condition monitoring is not enabled on the module) 	600-040		
	 SIL version with CMS license pre-installed (condition monitoring is enabled on the module) 	603-040		
	The MPC4 ^{Mk2} SIL ordering number PNRs 600-040 and 603-040 correspond to the 600-040-vvv-vvv, where "vvv" represents the hardware versions that can be used by			
IOC4 ^{Mk2}	Different versions of the VM600 ^{Mk2} IOC4 ^{Mk2} input/output module:			
	- Standard version	600-043		
	- Standard version, with conformal coating	600-043L		
		where "Hh" represents the hardware versions ("H" increments are for major modifications uct interchangeability, "h" increments are for minor modifications that have no effect		
IOC4 ^{Mk2} SIL	- SIL version	600-042		
	e IOC4 ^{Mk2} SIL ordering number PNR 600-042 corresponds to the underlying module version 0-024-100-3Hh, where "Hh" represents the hardware versions ("H" increments are for major modifications t can affect product interchangeability, "h" increments are for minor modifications that have no effect interchangeability).			
MPC4 ^{Mk2} CMS license	To enable condition monitoring on a MPC4 ^{Mk2} module	608-002-000-001		

See Notes on the following page \dots

ORDERING INFORMATION (continued)

Notes

Machinery protection and condition monitoring

 $The \ VM600^{Mk2} \ MPC4^{Mk2} + IOC4^{Mk2} \ machinery \ protection \ and \ condition \ monitoring \ module \ supports \ both \ machinery \ protection$ and condition monitoring applications as follows: machinery protection functionality is available by default, while condition monitoring functionality is optional and requires a license.

Accordingly, MPC4^{Mk2} condition monitoring can be used by either:

- (1) Ordering a version of the MPC4^{Mk2} module with condition monitoring enabled (that is, PNR 603-041 with a CMS license pre-installed).
- (2) Ordering a MPC4^{Mk2} CMS license for a version of the MPC4^{Mk2} module without condition monitoring enabled (that is, PNR 600-041 with no CMS license).

For any MPC4^{Mk2} + IOC4^{Mk2} module, the available machinery monitoring functionality is determined by the firmware running on the module (there is separate machinery protection firmware and condition monitoring firmware) and whether the module has condition monitoring enabled/licensed. (The VibroSight System Manager software is used to check/update the firmware(s) running on a module, check the condition monitoring license status of a module and upload a MPC4^{Mk2} CMS license, as required.)

It is important to note that MPC4^{Mk2} condition monitoring also requires a VibroSight[®] software edition/license that supports condition monitoring. Refer to the *VibroSight® machinery monitoring system software data sheet* for further information.

For example, a VibroSight® / VM600^{Mk2} system consisting of MPC4^{Mk2} + IOC4^{Mk2} modules can initially be installed and used as a MPS only. Then, CMS functionality can be quickly and easily added at any time by upgrading the licenses for the MPC4^{Mk2} + IOC4^{Mk2} module(s) and for the VibroSight[®] software, as required.

Condition monitoring licensing

To order a MPC4^{Mk2} CMS license that enables condition monitoring for a MPC4^{Mk2} module that currently supports machinery protection only (for example, PNR 600-041), the ordering number 608-002-000-001 is used. As a MPC4^{Mk2} CMS license is tied to the module, the following additional information must also be provided: Serial number (xxxxxxx) and MAC address. (The VibroSight System Manager software is used to access a device information file for the module that provides the required information, subsequently set (upload) the generated license, etc.)

Pre-configuration

Pre-configured VM600^{Mk2} MPC4^{Mk2} + IOC4^{Mk2} modules are only available as part of a complete configured system (ordered using the VM600MK2SYS-based ordering number).

VM600^{Mk2} MPC4^{Mk2} + IOC4^{Mk2} modules are also available with an optional conformal coating ("varnish") applied in order to provide additional environmental protection against chemicals, dust, moisture, etc. Contact Parker Meggitt (Meggitt SA) for further information.

RELATED PRODUCTS

VM600^{Mk2}/VM600 system racks ABF04x : Refer to corresponding data sheet VM600^{Mk2}/VM600 slimline rack **ABE056** : Refer to corresponding data sheet $AMC10^{Mk2} + IOC10^{Mk2}$ VM600^{Mk2} temperature and analog monitoring : Refer to corresponding data sheet CPUMMk2 + IOCNMk2 VM600^{Mk2} rack controller and communications : Refer to corresponding data sheet interface module RLC16^{Mk2} VM600^{Mk2} relay modules : Refer to corresponding data sheet VM600^{Mk2}/VM600 condition monitoring module XMx16 + XIO16T : Refer to corresponding data sheet VibroSight® machinery monitoring system VibroSight® : Refer to corresponding data sheet software

VM600^{Mk2} MPC4^{Mk2} + IOC4^{Mk2} machinery protection and condition monitoring modules data sheet Document reference DS 268-121

Parker Hannifin Corporation – usually referred to as just Parker – is a global leader in motion and control technologies, providing precision-engineered solutions for a wide variety of mobile, industrial and aerospace markets. For more than a century the company has been enabling engineering breakthroughs that lead to a better tomorrow.

Parker Meggitt joined the Parker Aerospace Group in September 2022 following the successful acquisition of Meggitt PLC, a world leader in aerospace, defense and energy. This includes the Meggitt facility in Fribourg, Switzerland, operating as the legal entity Meggitt SA (formerly Vibro-Meter SA). Accordingly, the vibro-meter® product line is now owned by Parker.

All information in this document, such as descriptions, specifications, drawings, recommendations and other statements, is believed to be correct and reliable. Although given in good faith, the accuracy and/or completeness of such data is not guaranteed or legally binding on Parker Meggitt (Meggitt SA) and we reserve the right to alter any part of this document/publication without prior notice. Before acquiring and/or using this product, you should evaluate it and determine if it is suitable for your intended application. You should also check our website at www.meggittsensing.com/energy to ensure that the latest versions of documentation are being used. For example, data sheets, certificates, product drawings, user manuals, service bulletins and/or other instructions affecting the product.

Unless expressly agreed in writing with Parker Meggitt, you assume all risks and liability associated with use of the product. Any recommendations and advice given without charge, whilst given in good faith, are not legally binding. We take no responsibility for any statements related to the product which are not contained in a current Parker Meggitt publication, nor for any statements contained in extracts, summaries, translations or any other documents not authored and produced by us.

The certifications and warranties applicable to the products supplied by Parker Meggitt are valid only for new products purchased directly from us or an authorized distributor.

In this publication, a dot (.) is used as the decimal separator and thousands are separated by thin spaces. Example: 12345.67890. Copyright © 2025 Parker Meggitt. All rights reserved.

Sales offices and distributors

Parker has sales offices and distributors all around the world. For information on your local contact, please visit our website.

Local representative

Parker Meggitt (Meggitt SA) office

Parker Meggitt,
Motion, Power & Sensing Division (MPSD).
Meggitt SA, Route de Moncor 4, Case postale,
1701 Fribourg, Switzerland.
www.meggittsensing.com/energy
www.meggitt.com
www.parker.com