

PWR steam turbine-generator

The world's largest turbine-generator

- 1800MW, 4 stages : HP-IP, 3xLP
- 10 bearings totalling more than 45 measuring pts
- Additional special measuring points: valve condition monitoring
- Analysis of more than 150 pages of customer specifications
- 64 documents, reports, and process to execute to the customer's plan

Customer imperatives for the TSI supplier: flexibility, expertise, professionalism & know-how

PWR steam turbine-generator

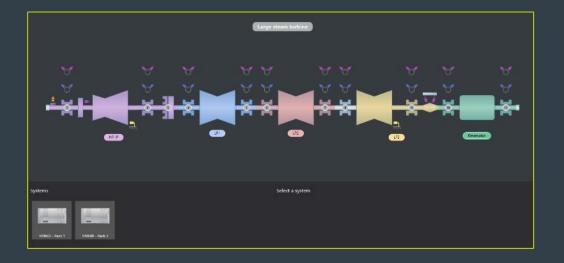
Customer based in Somerset, UK

Expertise & Services

- Specific sensors (pendulum, extension probe, transmitter)
- Special sensor accessories (junction box, cable gland, mounting bracket)
- SIL2 and ATEX Certification
- 2003 (critical axial position) and 20010 (radial bearing vibration) trip functionality
- Fully-assembled cabinet
- IT interface with complex customer network and cybersecurity

Dedicated team & Customer Support

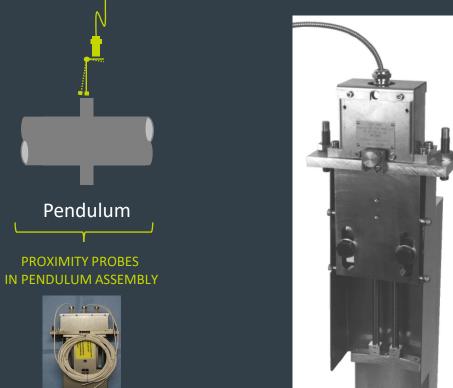
- Project Management, Monthly Progress Report
- Project documentation management, technical studies, tests and reports
- Manage and follow process, dedicated quality plan
- Support after sale, software versioning (VibroSight), software support (commercial aspect).

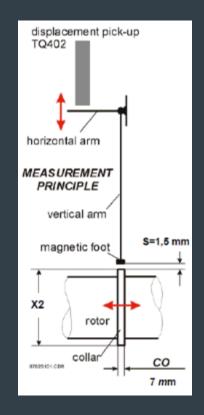

PWR steam turbine-generator

Machine Train Configuration Example

VibroSight Protect

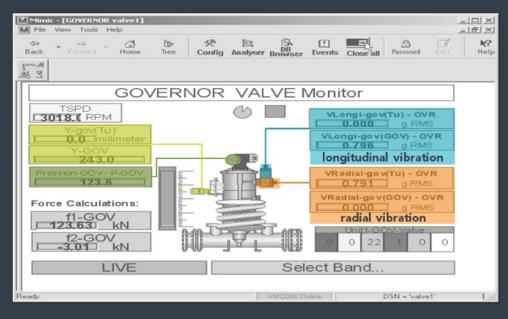
- Highly graphical configuration environment for MPS
- Can now be exported to CM to eliminate tedious manual re-entry of the same data
- Improved icons in development will be able to use in slide presentations to eliminate tedious re-drawing of machine elements, measurements, etc.

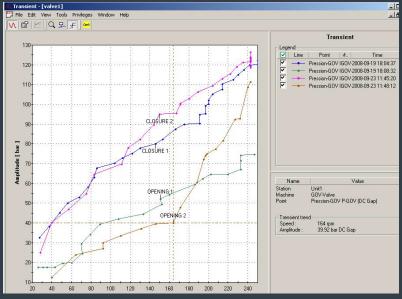



PWR steam turbine-generator

rotor / casing differential expansion via pendulum probe*

A displacement transducer of the TQ family is mounted in the pendulum's head and observes the relative displacement of a target, which is mechanically linked with the pendulum's arm.

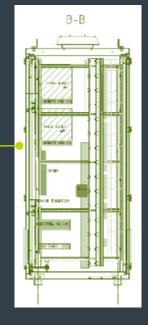


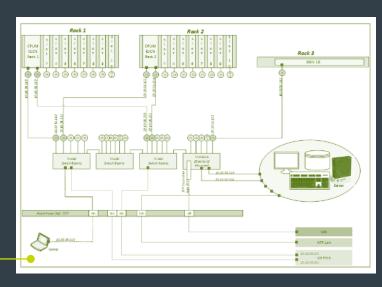

^{*} customized sensor capabilities

PWR steam turbine-generator

valve condition monitoring

- Based on Pressure,
 Stroke, and Vibration
 Measurements
 - Thanks to a long partnership with major turbine manufacturers, Parker-Meggitt is able to provide an innovative solution for monitoring selected nonrotating equipment such as valves





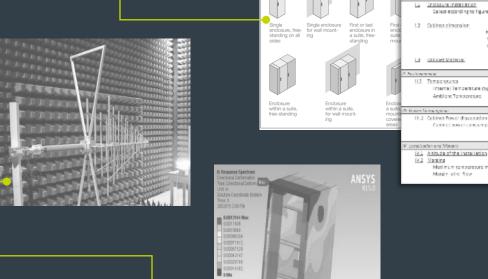
PWR steam turbine-generator

Turnkey Scope

- Project Management and Project Team
- System Design & Network Design
- Mechanical execution (transducer bracketry and mounting)
- Electrical & Instrument execution (field wiring, cabinet wiring, network cabling)
- IT / OT coordination
- Enclosure / cabinet procurement and fabrication -
- Hardware configuration
- Software configuration
- Factory Acceptance Testing (FAT)
- System integration (DCS, turbine control, historian, etc.)
- Sensor calibration
- Site Acceptance Testing (SAT) / Commissioning / Loop checks
- Startup "baseline" data collection and assessment
- Drawings and documentation
- Training

PWR steam turbine-generator

Specific Studies (internal or external expertise)


- Thermal balance and sizing of enclosures
 - Meggitt has developed an expertise to calculate
 - the effective enclosure surface
 - the thermal radiation

 $Qs = k * A * \Delta T$

the required cooling output

- Qe = Qv Qs
- the maximum temperature inside
- $Qe = k * A * \Delta Tmax$
- the required volumetric flow for fans
- $V = f * Qv / \Delta T$

- **EMC Testing and Certification**
 - For certain tests and certification, we use external laboratories
- Seismic Analysis
 - For specific analysis, we subcontract simulation, tests, and detailed analysis

Internal Temperature (No 35°C TI-

PWR steam turbine-generator

Cybersecurity

- At (or near) the #1 concern for many customers
 - Need secure remote access to data
 - Need to be able to access from business network
 - Need to segregate protection from CM
 - Often using advanced technologies like data diodes and server replication
 - Standards such as IEC 62443 increasing in importance
 - Part 4-1 product development process compliance
 - Part 4-2: product compliance
 - Part 2-4: service provider security program compliance

